

1.1. SEQUENCES

A succession of numbers formed according to a certain rule and arranged in a definite order is called a **sequence**.

Illustration. $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{6}$, ..., $\frac{1}{2n}$... is a sequence.

In a sequence, the numbers occurring at its first place, second place, third place, ... *n*th place are respectively called its first term, second term, third term, ..., *n*th term.

1.2. ARITHMETIC PROGRESSIONS

A sequence is said to be an **arithmetic progression (AP)** if the difference of each term, except the first one, from its preceding term is always same.

For example 2, 5, 8, 11, ... is an AP, because 5-2=3, 8-5=3, 11-8=3, ...

Thus, the sequence $\{T_n\}$ is an arithmetic progression, if there

exists a number, say, d such that $T_{n+1} - T_n = d$ for $n \ge 1$.

Definition of an AP

If 'a' and 'd' be the first term and common difference of the AP $\{T_n\}$.

$$T_n = a + (n-1)d, \quad n \in \mathbf{N}.$$

Example 1. Find the number of terms in the Arithmetic progression (A.P.) 7, 10, 13, ..., 31.

Solution. Given A.P. is 7, 10, 13, ..., 31

Since first term a = 7, common difference d = 10 - 7 = 3 and $T_n = 31$.

We know that $T_n = a + (n - 1)d$ 31 = 7 + (n - 1)3 31 - 7 = 3n - 3 24 = 3n - 3 3n = 27n = 9

Hence, the number of terms in the A.P. is 9.

Example 2. Find the sum of the following arithmetic progression 9, 15, 21, 27, The total number of term is 14.

Solution. Given A.P. is 9, 15, 21, 27, ...

Here first term a = 9, common difference d = 15 - 9 = 6

Number of term n = 14.

We know that $S_n = \frac{n}{2} [2a + (n-1)d]$ $S_{14} = \frac{14}{2} [2 \times 9 + (14 - 1)6]$

 $= 7[18 + 78] = 7 \times 96 = 672$

Hence, the sum of the given A.P. is 672.

Example 3. Find the m^{th} term of an A.P. sum of whose first n terms is $2n + 3n^2$.

Solution. Given that sum of first *n* terms of an A.P. is $2n + 3n^2$ *i.e.*, $S_n = 2n + 3n^2$

Hence the m^{th} term of the A.P. is

$$\begin{split} \mathbf{T}_{m} &= \mathbf{S}_{m} - \mathbf{S}_{m-1} \\ &= (2m + 3m^{2}) - \{2(m - 1) + 3(m - 1)^{2}\} \\ &= (2m + 3m^{2}) - \{(2m - 2) + 3(m^{2} + 1 - 2m)\} \\ &= (2m + 3m^{2}) - (2m - 2 + 3m^{2} + 3 - 6m) \\ &= 2m + 3m^{2} - 2m + 2 - 3m^{2} - 3 + 6m \\ &= 6m - 1. \end{split}$$

Example 4. Find the 17th term from the end of the A.P. 1, 6, 11, 16, ..., 21, 216.

Solution. Given A.P. is 1, 6, 11, 16,, 211, 216. Here *a* = 1, *d* = 6 – 1 = 5, and last term *l* = 216, *n* = 17

We know that:
$$T_n = l - (n - 1)d$$

 $T_{17} = 216 - (17 - 1)5$
 $= 216 - 80 = 136$

1.3. GEOMETRIC PROGRESSIONS

A sequence of *non-zero* numbers is said to be a **geometric progression** (**GP**) if the ratio of each term, except the first one, by its preceding term is always same.

For example, 3, 6, 12, 24, ... is a GP, because

$$\frac{6}{3} = 2, \frac{12}{6} = 2, \frac{24}{12} = 2, \cdots$$

Thus, the sequence $\{T_n\}$ with $T_n \neq 0$ is a geometric progression if there exists a non-zero number, say, r such that $\frac{T_{n+1}}{T_n} = r$ for $n \ge 1$.

The constant number 'r' mentioned above is called the **common ratio** of the corresponding GP. The common ratio of a GP is denoted by 'r'.

The first term of a GP, is generally denoted by 'a'.

Definition of a GP

If 'a' and 'r' be respectively the first term and common ratio of the GP $\{T_n\}$, then

$$T_n = ar^{n-1}, \quad n \in \mathbf{N}. \tag{1}$$

Example 5. Find the 9th and nth terms of the sequence 3, 6, 12, 24, ... **Solution.** Given sequence is 3, 6, 12, 24,(1)

Here,
$$\frac{T_2}{T_1} = \frac{6}{3} = 2$$
, $\frac{T_3}{T_2} = \frac{12}{6} = 2$, ... $\therefore \quad \frac{T_2}{T_1} = \frac{T_3}{T_2} = \dots = 2$

:. (1) is a GP with a = 3 and r = 2. Now, $T_9 = ar^{9-1} = ar^8 = 3(2)^8 = 3(256) = 768$ $[T_n = ar^{n-1}]$ $T_n = ar^{n-1} = 3(2)^{n-1}$.

and

Example 6. Which term of the series $\frac{1}{4} - \frac{1}{2} + 1 + ...$ is 256?

Solution. The series is $\frac{1}{4} + \left(-\frac{1}{2}\right) + 1 + \dots$

Here,

$$\frac{T_2}{T_1} = \frac{-1/2}{1/4} = -2, \quad \frac{T_3}{T_2} = \frac{1}{-1/2} = -2, \dots$$

$$\therefore \qquad \frac{T_2}{T_1} = \frac{T_3}{T_2} = \dots = -2$$

$$\therefore \text{ The given series is a GS with } a = 1/4 \text{ and } r = -2.$$
Let

$$T_n = 256 \qquad \therefore \qquad ar^{n-1} = 256$$

$$\Rightarrow \qquad = 256 \qquad \Rightarrow \qquad (-2)^{n-1} = 1024$$

$$\Rightarrow \qquad (-2)^{n-1} = 210 \qquad \Rightarrow \qquad (-2)^{n-1} = (-2)^{10}$$

$$\Rightarrow \qquad n-1 = 10 \qquad \Rightarrow \qquad n = 11.$$

$$\therefore 256 \text{ is the 11th term.}$$

Example 7. For what value of n, the nth terms of the series "5 + 10 + 20 + ..." and "1280 + 640 + 320 + ..." are equal?

Solution. Ist series: We have 5 + 10 + 20 + ...

Here, $a_1 = 5 \text{ and } r_1 = \frac{10}{5} = \frac{20}{10} = 2$ \therefore $T_n = a_1 r_1^{n-1} = 5(2)^{n-1}$ **Here,** $a_2 = 1280 \text{ and } r_2 = \frac{640}{1280} = \frac{320}{640} = \frac{1}{2}$ \therefore $T_n = a_2 r_2^{n-1} = 1280 \left(\frac{1}{2}\right)^{n-1}$

Sum of first n Terms of A GP

The sum of first *n* terms of a GP is denoted by S_n .

If $\{T_n\}$ is a GP, then we have

$$S_n = T_1 + T_2 + T_3 + \dots + T_n, n \in \mathbf{N}.$$

For example, 2, 6, 18, 54, L is a GP and:
$$S_1 = 2, S_2 = 2 + 6 = 8, S_3 = 2 + 6 + 18 = 26 \text{ etc.}$$

Definition

If a and r be respectively the first term and common ratio of a GP, then the sum of first n terms of this GP is given by

$$S_n = \begin{cases} na & \text{if } r = 1\\ \frac{a(1-r^n)}{1-r} & \text{if } r \neq 1. \end{cases}$$

Example 8. Find the 20th term of the G.P. $\frac{5}{5}$, $\frac{5}{4}$, $\frac{5}{8}$, ...

Solution. Given G.P. is $\frac{5}{2}$, $\frac{5}{4}$, $\frac{5}{8}$,

Here first term $a = \frac{5}{2}$ 5

Common ratio
$$r = \frac{\overline{4}}{5} = \frac{5}{4} \times \frac{2}{5} = \frac{1}{2}$$

and

....

We know that $\begin{aligned} \frac{3}{2} & \mathbf{r} & \mathbf{3} & \mathbf{2} \\ n &= 20 \\ T_n &= ar^{n-1} \\ T_{20} &= \frac{5}{2} \left(\frac{1}{2}\right)^{20-1} = \frac{5}{2} \times \left(\frac{1}{2}\right)^{19} = 2^{\frac{5}{20}}. \end{aligned}$

Example 9. In a G.P. $T_{10} = 9$ and $T_4 = 4$, then find T_7 . **Solution.** We know that $T_n = ar^{n-1}$

$$\begin{aligned} T_{10} &= 9 = ar^9 \implies ar^9 = 9 \\ T_4 &= 4 = ar^3 \implies ar^3 = 4 \end{aligned} \qquad \dots (i)$$

Multiply equation (i) and (ii), we get

$$(ar^{9}) (ar^{3}) = 9 \times 4$$

$$a^{2}r^{12} = 36$$

$$(ar^{6})^{2} = 36$$

$$ar^{6} = 6$$

$$T_{7} = 6$$
[:: $T_{n} = ar^{n-1}$]

i.e.,

Example 10. Find the sum of 7 terms of the G.P. 3, 6, 12, **Solution.** Here a = 3, $r = \frac{6}{3} = 2$ and n = 7 We know that $S_n = a \left[\frac{r^n - 1}{r - 1} \right]$ $\begin{bmatrix} \text{If } r < 1 \text{ then use this formula } i.e., a \left[\frac{1 - r^n}{1 - r} \right] \end{bmatrix}$ $= 3 \left[\frac{(2)^7 - 1}{2 - 1} \right] = \frac{3(128 - 1)}{1} = 3 \times 127 = 381.$

EXERCISE

- **1.** Find the 20th and *n*th term of the sequence 4, 9, 14, 19,
- **2.** Show that the sequence: $\log a$, $\log \frac{a^2}{b}$, $\log \frac{a^3}{b^2}$, ... is an AP.
- **3.** Which term of the series 37 + 32 + 27 + 22 + ... is -103?
- **4.** Determine the 1st term and the 40th term of the AP whose 7th term is 34 and 15th term is 74.
- **5.** Find the sum of all 3-digit numbers which leave the remainder 1 when divided by 4.
- **6.** Evaluate:

(i) $\frac{1}{9} + \frac{2}{9} + \frac{1}{3} + \dots + 25$ terms (ii) $5 + 13 + 21 + \dots + 181$.

- **7.** How many terms of the sequence -12, -9, -6, -3, ... must be taken to make the sum 54?
- **8.** The first term of a GP is 1. The sum of third and fifth terms is 90. Find the common ratio of the GP.
- **9.** If the 5th term of a GP is 16 and the 10th term is 1/2, find the GP. Also, find its 15th term.
- **10.** Determine the number of terms in the GP $\{T_n\}$ if $T_1 = 3$, $T_n = 96$ and $S_n = 189$.