SEMESTER-I

PERIOD-I

TOPIC

Sequence and Series

1.1. SEQUENCES

A succession of numbers formed according to a certain rule and arranged in a definite order is called a sequence.

Illustration. $\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \ldots, \frac{1}{2 n} \ldots$ is a sequence.
In a sequence, the numbers occurring at its first place, second place, third place, ... nth place are respectively called its first term, second term, third term, ..., nth term.

1.2. ARITHMETIC PROGRESSIONS

A sequence is said to be an arithmetic progression (AP) if the difference of each term, except the first one, from its preceding term is always same.

For example $2,5,8,11, \ldots$ is an AP, because

$$
5-2=3,8-5=3,11-8=3, \ldots
$$

Thus, the sequence $\left\{T_{n}\right\}$ is an arithmetic progression, if there exists a number, say, d such that $T_{n+1}-T_{n}=d$ for $n \geq 1$.

Definition of an AP

If ' a ' and ' d ' be the first term and common difference of the AP $\left\{T_{n}\right\}$.

$$
T_{n}=a+(n-1) d, \quad n \in \mathbf{N} .
$$

Example 1. Find the number of terms in the Arithmetic progression (A.P.) $7,10,13, \ldots, 31$.
Solution. Given A.P. is $7,10,13, \ldots, 31$
Since first term $a=7$, common difference $d=10-7=3$ and $T_{n}=31$.

We know that $\quad T_{n}=a+(n-1) d$

$$
\begin{aligned}
31 & =7+(n-1) 3 \\
31-7 & =3 n-3 \\
24 & =3 n-3 \\
3 n & =27 \\
n & =9
\end{aligned}
$$

Hence, the number of terms in the A.P. is 9 .
Example 2. Find the sum of the following arithmetic progression $9,15,21,27, \ldots$. The total number of term is 14.
Solution. Given A.P. is $9,15,21,27, \ldots$
Here first term $a=9$, common difference $d=15-9=6$
Number of term $n=14$.
We know that $\quad \mathrm{S}_{n}=\frac{n}{2}[2 a+(n-1) d$

$$
\begin{aligned}
S_{14} & =\frac{14}{2}[2 \times 9+(14-1) 6] \\
& =7[18+78]=7 \times 96=672
\end{aligned}
$$

Hence, the sum of the given A.P. is 672.
Example 3. Find the $m^{\text {th }}$ term of an A.P. sum of whose first n terms is $2 n+3 n^{2}$.
Solution. Given that sum of first n terms of an A.P. is $2 n+3 n^{2}$
i.e.,

$$
S_{n}=2 n+3 n^{2}
$$

Hence the $m^{\text {th }}$ term of the A.P. is

$$
\begin{aligned}
\mathrm{T}_{m} & =\mathrm{S}_{m}-\mathrm{S}_{m-1} \\
& =\left(2 m+3 m^{2}\right)-\left\{2(m-1)+3(m-1)^{2}\right\} \\
& =\left(2 m+3 m^{2}\right)-\left\{(2 m-2)+3\left(m^{2}+1-2 m\right)\right\} \\
& =\left(2 m+3 m^{2}\right)-\left(2 m-2+3 m^{2}+3-6 m\right) \\
& =2 m+3 m^{2}-2 m+2-3 m^{2}-3+6 m \\
& =6 m-1 .
\end{aligned}
$$

Example 4. Find the $17^{\text {th }}$ term from the end of the A.P. 1, 6, 11, 16, ..., 21, 216.
Solution. Given A.P. is $1,6,11,16, \ldots ., 211,216$.
Here $a=1, d=6-1=5$, and last term $l=216, n=17$

$$
\text { We know that: } \quad \begin{aligned}
\mathrm{T}_{n} & =l-(n-1) d \\
\mathrm{~T}_{17} & =216-(17-1) 5 \\
& =216-80=136 .
\end{aligned}
$$

1.3. GEOMETRIC PROGRESSIONS

A sequence of non-zero numbers is said to be a geometric progression $(\mathbf{G P})$ if the ratio of each term, except the first one, by its preceding term is always same.

For example, $3,6,12,24, \ldots$ is a GP, because

$$
\frac{6}{3}=2, \frac{12}{6}=2, \frac{24}{12}=2, \cdots
$$

Thus, the sequence $\left\{T_{n}\right\}$ with $T_{n} \neq 0$ is a geometric progression if there exists a non-zero number, say, r such that $\frac{T_{n+1}}{T_{n}}=r$ for $n \geq 1$.

The constant number ' r ' mentioned above is called the common ratio of the corresponding GP. The common ratio of a GP is denoted by ' r '.

The first term of a GP, is generally denoted by ' a '.

Definition of a GP

If ' a ' and ' r ' be respectively the first term and common ratio of the GP $\left\{T_{n}\right\}$, then

$$
\begin{equation*}
T_{n}=a r^{n-1}, \quad n \in \mathbf{N} . \tag{1}
\end{equation*}
$$

Example 5. Find the 9 th and nth terms of the sequence 3, 6, 12, 24, ... Solution. Given sequence is $3,6,12,24, \ldots$

Here, $\quad \frac{T_{2}}{T_{1}}=\frac{6}{3}=2, \quad \frac{T_{3}}{T_{2}}=\frac{12}{6}=2, \ldots \quad \therefore \quad \frac{T_{2}}{T_{1}}=\frac{T_{3}}{T_{2}}=\ldots=2$
\therefore (1) is a GP with $a=3$ and $r=2$.
Now,

$$
\begin{array}{ll}
T_{9}=a r^{9-1}=a r^{8}=3(2)^{8}=3(256)=\mathbf{7 6 8} & {\left[T_{n}=a r^{n-1}\right]} \\
T_{n}=a r^{n-1}=\mathbf{3}(2)^{n-1}
\end{array}
$$

and
Example 6. Which term of the series $\frac{1}{4}-\frac{1}{2}+1+\ldots$ is 256 ?
Solution. The series is $\frac{1}{4}+\left(-\frac{1}{2}\right)+1+\ldots$

Here,

$$
\frac{T_{2}}{T_{1}}=\frac{-1 / 2}{1 / 4}=-2, \quad \frac{T_{3}}{T_{2}}=\frac{1}{-1 / 2}=-2, \ldots
$$

$$
\therefore \quad \frac{T_{2}}{T_{1}}=\frac{T_{3}}{T_{2}}=\ldots=-2
$$

$\therefore \quad$ The given series is a GS with $a=1 / 4$ and $r=-2$.
Let

$$
T_{n}=256
$$

$\therefore \quad a r^{n-1}=256$
$\Rightarrow \quad=256 \quad \Rightarrow \quad(-2)^{n-1}=1024$
$\Rightarrow \quad(-2)^{n-1}=210 \quad \Rightarrow \quad(-2)^{n-1}=(-2)^{10}$
$\Rightarrow \quad n-1=10 \quad \Rightarrow \quad n=11$.
$\therefore 256$ is the $\mathbf{1 1}$ th term.
Example 7. For what value of n, the nth terms of the series " $5+10+20+\ldots$ " and " $1280+640+320+\ldots$ " are equal?
Solution. Ist series: We have $5+10+20+\ldots$
Here,

$$
a_{1}=5 \text { and } r_{1}=\frac{10}{5}=\frac{20}{10}=2
$$

$\therefore \quad T_{n}=a_{1} r_{1}^{n-1}=5(2)^{n-1}$
IInd series: We have $1280+640+320+\ldots$
Here, $\quad a_{2}=1280$ and $r_{2}=\frac{640}{1280}=\frac{320}{640}=\frac{1}{2}$

$$
\therefore \quad T_{n}=a_{2} r_{2}^{n-1}=1280\left(\frac{1}{2}\right)^{n-1}
$$

Sum of first \boldsymbol{n} Terms of A GP

The sum of first n terms of a GP is denoted by S_{n}.
If $\left\{T_{n}\right\}$ is a GP, then we have

$$
S_{n}=T_{1}+T_{2}+T_{3}+\ldots+T_{n}, n \in \mathbf{N} .
$$

For example, $2,6,18,54$, L is a GP and:

$$
S_{1}=2, S_{2}=2+6=8, S_{3}=2+6+18=26 \text { etc. }
$$

Definition

If a and r be respectively the first term and common ratio of a GP, then the sum of first n terms of this GP is given by

$$
S_{n}= \begin{cases}n a & \text { if } \quad r=1 \\ \frac{a\left(1-r^{n}\right)}{1-r} & \text { if } \quad r \neq 1\end{cases}
$$

Example 8. Find the 20th term of the G.P. $\frac{5}{5}, \frac{5}{4}, \frac{5}{8}, \ldots \ldots$.
Solution. Given G.P. is $\frac{5}{2}, \frac{5}{4}, \frac{5}{8}, \ldots \ldots$
Here first term $\quad a=\frac{5}{2}$

Common ratio

$$
r=\frac{\frac{5}{4}}{\frac{5}{2}}=\frac{5}{4} \times \frac{2}{5}=\frac{1}{2}
$$

and

$$
n=20
$$

We know that $\quad T_{n}=a r^{n-1}$

$$
T_{20}=\frac{5}{2}\left(\frac{1}{2}\right)^{20-1}=\frac{5}{2} \times\left(\frac{1}{2}\right)^{19}=2^{\frac{5}{20}}
$$

Example 9. In a G.P. $T_{10}=9$ and $T_{4}=4$, then find T_{7}.
Solution. We know that $T_{n}=a r^{n-1}$

$$
\therefore \quad \begin{align*}
T_{10} & =9=a r^{9} \Rightarrow a r^{9}=9 \tag{i}\\
T_{4} & =4=a r^{3} \Rightarrow a r^{3}=4 \tag{ii}
\end{align*}
$$

Multiply equation (i) and (ii), we get

$$
\begin{aligned}
\left(a r^{9}\right)\left(a r^{3}\right) & =9 \times 4 \\
a^{2} r^{12} & =36 \\
\left(a r^{6}\right)^{2} & =36 \\
a r^{6} & =6 \\
T_{7} & =6
\end{aligned} \quad\left[\because T_{n}=a r^{n-1}\right]
$$

Example 10. Find the sum of 7 terms of the G.P. 3, 6, 12,
Solution. Here $a=3, r=\frac{6}{3}=2$ and $n=7$

We know that $S_{n}=a\left[\frac{r^{n}-1}{r-1}\right]$

$$
\begin{aligned}
& {\left[\text { If } r<1 \text { then use this formula i.e., } a\left[\frac{1-r^{n}}{1-r}\right]\right]} \\
& =3\left[\frac{(2)^{7}-1}{2-1}\right]=\frac{3(128-1)}{1}=3 \times 127=381
\end{aligned}
$$

EXERCISE

1. Find the 20 th and nth term of the sequence $4,9,14,19, \ldots$.
2. Show that the sequence: $\log a, \log \frac{a^{2}}{b}, \log \frac{a^{3}}{b^{2}}, \ldots$ is an AP.
3. Which term of the series $37+32+27+22+\ldots$ is -103 ?
4. Determine the 1 st term and the 40 th term of the AP whose 7 th term is 34 and 15 th term is 74 .
5. Find the sum of all 3-digit numbers which leave the remainder 1 when divided by 4.
6. Evaluate:
(i) $\frac{1}{9}+\frac{2}{9}+\frac{1}{3}+\ldots+25$ terms
(ii) $5+13+21+\ldots+181$.
7. How many terms of the sequence $-12,-9,-6,-3, \ldots$ must be taken to make the sum 54?
8. The first term of a GP is 1 . The sum of third and fifth terms is 90 . Find the common ratio of the GP.
9. If the 5 th term of a GP is 16 and the 10 th term is $1 / 2$, find the GP. Also, find its 15 th term.
10. Determine the number of terms in the GP $\left\{T_{n}\right\}$ if $T_{1}=3, T_{n}=96$ and $S_{n}=189$.
